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to sintosoidaUdy disttibwted noiunae-prese uading oA tempecutau'e
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1. Introduction

Certain fiber-reinforced materials, especially those with very soft

matrix material (e.g., cord-ruhber composites), exhibit different plastic

behavior dependinq upon whether the fiber-direction strain is tensile or

compressive [1-3]. In other words, the tanqent modulus in tension is

quite different from the tangent modulus in compression. As a first

approximation the uniaxial stress-strain behavior of such materials is

often represented as being linear with different slopes (i.e., elastic

moduli) dependinq upon the siqn of the fiber-direction strain. Such a
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material is called a bimodulus composite material. Several macroscopic

material models appropriate for bimodulus fiber-reinforced composites

have been proposed and are reviewed in [4]. It has been shown that the

fiber-governed symmetric-compliance model proposed in [5] agrees well

with experimental data for several materials with drastically different

elastic properties in tension and compression.

Prior to the works of the present authors, the literature available

in Enqlish on bending and vibration analyses of bimodulus plates was

quite sparse and largely concerned with the bending of bimodulus

isotropic-material plates. Shapiro [6] considered the simple problem of

a circular plate under a pure bending moment at its edge. Kamiya [7]

analyzed the large-deflection behavior of clamped circular plates using a

finite-difference technique. In [8], Kamiya used the Galerkin method to

analyze the large-deflection behavior of rectanqular plates under

sinusoidally distributed loading. The effect of thickness shear

deformation was included in the simple case of cylindrical bendinq by

Kamiya [9]. The only previous analyses applicable to anisotropic

bimodulus material are the works of Jones and Morgan fl0], who treated

cylindrical bending of a thin, cross-ply laminate, and the closed-form

solutions of Kincannon and Bert [11,12] for clamped elliptic plates. All

of the previous thermoelastic analyses of bimodulus-material plates were

also limited to isotropic bimodulus materials and midplane-symmetric

temperature changes [13-17]. Apparently, there were no published papers

on the vibration of himodulus plates.

In the last two years, the present authors have contributed a series

of papers to the literature on bimodulus rectangular plates [18-23].

These works are apparently more qeneral than any analyses that have
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appeared in the open literature. More specifically, these works differ

from previous works in the following respects:

1. The material of each layer is both elastically and

thermoelastically orthotropic and bimodular.

2. Both single-layer orthotropic and two-layer cross-ply laminated

plate constructions are considered.

3. Thickness shear deformations are included.

4. Temperature changes through the thickness as well as in the

plane are considered.

5. Both finite-element and exact closed-form solutions are

presented.

The objective of the present paper is two-fold: to review the

recent develooments in the analyses of bimodulus-material plates with

finite dimensions and to present new finite-element results for

rectanqular plates under conditions that do not admit closed-form

solutions.

2. Governing Equations for Bimodulus Plates

In the following the equations governing the shear deformable theory

of layered composite plates (see Whitney and Pagano [24]) is reviewed and

the thermoelastic constitutive equations of bimodulus-material plates are

presented. In deriving the qoverninq equations it is assumed that all of

the layers in the plate remain elastic during the deformation, the

generalized Hooke's law is valid, and no slip occurs between any two

layers.

Consider a plate constructed of a finite number of uniform

thickness, orthotropic, himodulus layers with arbitrary orientations

(i.e., the material symmetry axes of each layer do not coincide, in

].



general with the plate axes). The x-y plane lies in the middle plane, R,

of the plate and the z-axis is normal to R. The displacement field in

the shear deformable theory of plates is assumed to be given by

u(xsy,z,t) =u 0(x,y,t) + z*X(x,y,t)

v(xly~z~t) =V (x,Y,t) + Z (x,y,t) (2.1)

w =w(x,y,t)

where u, v, and w are the displacements along x, y and z directions,

respectively, uO and vo are the in-plane displacements of the middle

plane, x and y are the bending slopes, and t is time. U1sing the

small-deflection theory, the strain-displacement relations can he

expressed in the form

C, Ex o 0X +Z x~x I E2= y =voly +zy'y9

£6 Y 09u + vo + z(*Xp + p Y ) ,(2.2)

Y xz * + W, ' 9 Yyz =Ly +w , £y I -C3O

where w,x aw/3x, etc.

The equations of motion are given by,

N1,x + N b = Pu o t + R x t

N6, + 2,y= Po,tt + R PY,tt

11x+ 129y = q + Pwtt (2.3)

Mi,x + M6,, - Q,= ''~x,tt + R uott

M 6 ,x + M2,y - Q2 'Yltt + R o9t

where P, R, and I are the normal, coupled-normal-rotatory, and rotatory

inertia coefficients,

(P,R,I) E Ef~ (l,Z, 1 2)p (m) dz(?4

m fm

p mbeing the material density of the m-th layer, q is the transversely
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distributed force, and Ni , Qi, and Mi are the respective inplane and

transverse stress and moment resultants defined by

h/2 hi2
(Ni'Mi) :f (lz)oi dz (i = 1,2,6) , (QIQ 2 ) = f (asa)dz,

-h/? -h/2

(2.5)

where h is the plate (laminate) thickness, and the so-called contracted

subscript notation is employed to denote the stress components.

Assuminq that the only plane of symmetry existing is in the plane of

the plate, the thermoelastic constitutive relations for each layer (z)

are taken to be monoclinic and bimodular as follows:

[1 FQ11k. Q12kk 0 l - a lkeT

02 I Q12k, Q22k. 0 E2 - a2kXT (2.6)

06 - 0 0 Qb6kJ X I

4 = [ 4k C45kj 4 (2.7)
05 C4 k k C 55k X 5

Here T is the temperature change measured from the strain-free

temperature, the C's are Cauchy elastic shear stiffnesses, the Q's are

plane-stress reduced stiffnesses, and the a's are thermal-expansion

coefficients. The third subscript in Qijkk and CijkX (and second in

ajkd£ refers to the bimodular characteristics: k = 1 denotes properties

associated with fiber-direction tension, k = 2 denotes fiber-direction

compression. Also, subscript Z refers to the individual layer number,

i.e., E = I and 2 for a two-layer laminate.

Substitutinq (2.2), (?.6) and (2.7) into (2.5), we ootiin the

constitutive equations for an arbitrarily laminated plate,
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iT
tN} [A] CB] I {e@}(

T '_L (2.8)
{M} [B] [l] {K} {M I

Q2 [S44j ' 45I4 (2.9)
where

0 0 0
o ' 2 Vo0 y , 6 = Uoy + Vo,x (2.10)

1  x,x ' 2 yy ' = IX,y +IX

and Aij, Bij, Dij, Sij are the respective inpiane, bendinq-inplane

coupling, bendinq or twistinq, and thickness-shear stiffnesses defined as

follows:

hi2
(aij,BijDij) =f h/2(l,z,z2 )Qijkt dz (ij = 1,2,6)

(2.11) i

h/2
S.= KiKjf Qijkx dz (ij = 4,5)

13 ~ -h/? ijk9

The stress and moment resultants, Ni and MT, due to thermal loadinq, are

defined by

z 2
(Ni,Mi) = s ml Qijkt cjk(TozT)dz , (ij 1,2,6) (2.12)

mm j

where the temperature change from a reference state is assumed to be

linear through the thickness, consistent with the plate theory:

T(x,t,z) = T0 (x,y) + zT1(x,y). (2.13)

This completes the description of the field equations. Closed-form

solutions to these equations are possible in the particular case of a

cross-ply plate whose stiffness coefficients (A. Bij and D ij) with

subscripts 16, 26, and 45 are zero, and whose edges are hinqed flexurally

but free to move in a direction normal to each edqe. The temperature

distribution and the normal-pressure loadings must be sinusoidal in order

to obtain the closed-form solution (see [18-23]).
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3. Finite-Element Formulation

The finite-element formulation of the equations presented in the

previous section follows alonq the same lines as for ordinary (i.e., not

bimodulus) plates (see Reddy [25]). The main difference lies in the

computation of the stiffness coefficients, which depend on the stresses

in the plate. We summarize the results in the following.

Consider a finite-element representation of the midplane of the

plate by quadrilateral isoparametric elements. Over a typical element,

Re , the displacements (u , vo,W,,') X•y ) are approximated by expressions

n n
u0= U 1 , vo =E vii, etc. (3.1)

i=1 1

where oi(x,y) (i = 1,2,....,n) are interpolation functions associated with

the linear (n = 4) or quadratic (n = 8 or 9) rectangular element.

Substituting (3.1) into the weak form associated with (2.3), (2.8), and

(2.9), we obtain

([K] - W2[M]){Aj {F) (3.2)

The elements of the stiffness matrix [K] and mass matrix [MI are given by

K A Gx + A G K12 = A Gxy+ A X
Il ij 66.66 ' ij 12 A 6bGji

K 4 = B 20 . + B , K 5 = B Gxy + B Gxyij 1 j ij ij 12 ij 6b ji ,

K2 2 = AB +A Gx K2 = 8 GxY + BG xy
ij 22 i B O6 i ij 66 ij 12 ji

1(25=8B G' . + B i 0 3 = S Gx +S 1#01 j 66 22 55ii S ij + S' Ij

. = S G + SGY , K s = S G-y°S 55Gij 44 1 ij 44 ij

K = D Gij + D G-y + S 5Go ij K = 0 G i + D1 Gxy
b Ii 5i ij 12 ij bb ji

K.. = 0 GO + D Y + S Go  K. = K?. = ) (3.3)ij 6 + 22 I 4413 1,1 11
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M. PG , (c 1,2,3)

M l = RG°  , = 4,5; a 0)ij ij

M = IG0° , (a = 4,5) , (3.4)13 13

F I c e dx dy , (a 1,2,3,4,5) (3.5)

= f dx dy ( ,n 0,1,2). (3.6)

f= NT  + NT f = NT  + NT f q

l ,x ,y 6 ,x ,y

f MT + MT f5 = MT + MT (3.7)4 ,x b,y 6,x 2,y

In the present study the 4-node and 8-node rectangular isoparametric

elements are employed.

4. Numerical Results and Discussion

Numerical results for deflections, neutral-surface locations, and

vibration frequencies are presented for plates under various edqe

conditions and loadinqs. The discussion of the results is divided into

three parts according to bending due to normal pressure, bendinq due to

thermal loading, and free vibration. In all three parts, numerical

results are presented first for plate problems which admit closed-form

solutions. All of the finite-element results presented herein were

obtained on an IBM 310/158 computer using the double-precision

arithmetic.
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Table 1. Elastic properties for two tirecord-rubber, unidirectional,
bimoduTus composite-m-aterials

Aramid Rubber (AR) Polyester-Rubber (PR)

(/ Tension Compression Tension Compression
Property and Units (k=l) (k=2) (k=l) (k=2)

Lonqitudinal Young's
modulus, GPa (El,) 3.58 0.0120 0.617 0.0369
Transverse Younq s modulus,
GPa (E 2) 0.00909 0.0120 0.00800 0.0106
Major Poisson's ratio,
dimensionlessa (v1 2) 0.416 0.205 0.475 0.185
Longitudinal-transverse
shear modulus, GPab (G12) 0.00370 0.00370 0.00262 0.00267
Transverse-thickness shear
modulus, GPa (G23) 0.00290 0.00499 0.00233 0.00475

aThe minor Poisson's ratio is assumed to be given by the reciprocal
relation.
bThe lonqitudinal-thickness shear modulus is assumed to he equal to the
lonqitudinal-transverse shear modulus.

Static Bending Due to Normal Pressure

To show the accuracy of the finite-element solutions, a comparison

is made of the present results with the closed-form results obtained in

[21]. Table 2 contains the neutral-surface locations, and the

nondimensionalized transverse deflection of single-layer and two-layer

(0°/90°), simply-supported (SS), rectangular plates (aramid-rubber) under

sinusoidally (SSL) distributed transverse load, q = qosin(lTx/a)sin(-ny/b).

As can be seen from Table 2, the agreement between the closed-form

solution (CFS) and finite-element solution (FES) is extremely qood. It

should be noted that if the material is treated as an ordinary material,

with material properties taken as the averaqe of compressive and tensile

properties, the deflections will he under-estimated siqnificantly.
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The aramid-rubber plates, in both the single- and cross-ply cases,

have noticeably larger values of Z than the polyester-rubber ones, due

to the more pronounced bimodulus effect in the fiber-direction Young's

modulus of the aramid-rubber. There are only very slight differences in

Z and deflection in qoing from a single-layer plate to a cross-ply

laminate. This is in considerable contrast to ordinary materials.

Having validated the finite-element model, the model is then used

for other combinations of loading and boundary conditions that are not

amenable to closed-form solutions. Figure I shows plots of the

nondimensionalized deflection versus the side-to-thickness ratio for two-

layer (0°/90 °) simply-supported and clamped (CC) square plates under

various loadings. The effect of the thickness shear on the deflections

is apparent from the graphs.

Static Bending Due to Thermal Loading

udrNext, numerical results are presented for static bending of plates

under thermal qradients only (i.e., To = 0). The same orthotropic

bi,modulus materials as listed in Table 1 are used. Since no measured

values of thermal-expansion coefficients of these materials are

available, the following ratios of the thermal-expansion coefficients are

used:
t 0. tc t 1t

2/a = 0.5 ; at/ 1 = .0 ; a/a 2 = 0.1. (4.3)

To show the accuracy of the finite-element solutions, a comparison

is made of the present results with the closed-form results obtained in

[22]. Table 3 contains the neutral-surface locations, and the
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nondimensionalized transverse deflection of single-layer and two-layer

(00/900), simply-supported (SS), rectangular plates (polyester-rubber)

under sinusoidally (SST) distributed temperature, T = 7 a sin(rx/a)

sin(wy/b). As can be seen from Table 3, the agreement between the

closed-form solution (CFS) and finite-element solution (FES) is extremely

good (see also Fiq. 2).

Table 3. Neutral-surface locations and dimensionless center deflections
for simply-supported thick (b/h = 10, Ki = K2 = 5/6)
rectangular plates of polyester-rubber subjected to sinusoidal
temperature gradient, T z zT, sin(nx/a)sin(iry/b).

sinqle-layer two-layer +

a/b Zx (= zx/h) w+ Zx (= zx /h)

CFS FES CFS FES CFS FES CFS FES

0.50 0.1031 0.1030 0.482 0.482 0.2599 0.2541 0.928 0.894
0.75 0.1184 0.1183 1.157 0.158 0.2554 0.2436 0.199 0.187
1.00 0.1308 0.1308 2.160 2.161 0.2398 0.2294 0.309 0.296
1.25 0.1360 0.1360 3.410 3.409 0.2119 0.2035 0.3q2 0.382
1.50 0.1332 0.1331 4.737 4.736 0.1734 0.1679 0.443 0.436
1.75 0.1234 0.1233 5.975 5.970 0.1284 0.1252 0.472 0.466
2.0 0.1078 0.1078 7.024 7.017 0.0815 0.0804 0.489 0.483

+Neutral-surface location Zy is not listed here (see [22])

++ =(wh/# T1 b
2)10

Next, finite-element results are presented for other combinations of

loading and boundary conditions that are not amenable to closed-form

solutions. Figure 3 shows plots of the nondimensionalized deflection

versus the side-to-thickness ratio for two-layer (0"/90") and one-layer

simply-supported (SS) square plates (polyester-rubber) under uniform

temperature gradient through the thickness. The effect of the thickness

shear on the deflections is apparent from the graphs.
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4,, 0.34

0.49-
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4-'
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o0.45

4- 60.24
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0.22
0.44

0.20
I I I I I I I _ . I . I

b/h -10 20 30 40 50

Fig.3 Nondimensionalized center deflection vs. side-to-thickness
ratio for two-layer simply supported (SS) square plates
under uniformly distributed temperature gradient through
the thickness.
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Natural Vibration Results

Before we present the numerical results of free vibration, we

discuss the effect of bimodulus action on plate stiffness in different

portions of a vibration cycle. First consider a single-layer, bimodulus

material plate at the two extremes of its deflection (Fiq. 4). During

the first half cycle (see Fig. 4a) the top surface is in compression and

the bottom in tension, thus causinq the neutral surface for ex to be

positive (znx > 0), i.e., a certain distance below the plate midplane.

During the second half cycle (Fiq. 4b) the top surface is in tension and

the bottom is in compression, just opposite to that encountered in the

first half cycle. However, the magnitude of Znx is the same as in the

first half cycle. Thus, it can be concluded that the effective stiffness

(and thus the frequency) associated with the second half cycle is

identical to that of the first half cycle and either modal shape, Fiq. 4a

or 4b, will give the same computational result for the natural

frequencies.

Now consider a two-ply laminate with the bottom layer (layer z = 1)

oriented at 0° and the top layer (X = 2) at 90° (see Fig. 4). Initially,

as shown in Fig. 4c, the neutral surface for cx falls below the

interface, within the 0° layer, while the neutral surface for cy falls

above the interface, completely within the 90" layer. In the latter

portion of the cycle, Fig. 4d, the ex neutral surface falls outside of

the layer, and the c neutral surface falls outside of the 900 layer.y

Therefore, compressive properties are used for the entire 0* layer, and

tensile ones for the 90° layer. Thus, for a two-layer cross-ply laminate

the plate stiffnesses acting in the two portions of a cycle are different

and the associated frequencies are also different (except for a square

. . .. S. . .. I II I iI ... . . .
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(A) FIRST HALF CYCLE (B) SECOND HALF CYCLE

SINGLE-LAYER, 0° BIMODULUS PLATE

Cy

Ex 0

X 0

Ey 0

(C) FIRST PORTION (D) SECOND PORTION
OF CYCLE OF CYCLE

TWO-LAYER, CROSS-PLY PLATE
(BOTTOM LAYER AT 00, TOP LAYER AT 900)

Fig. 4 Blmodulus action in single-layer and cross-ply plates in
the fundamental mode of vibration. Cross-hatched regions
denote tension in the respective fiber directions.
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plate). Denoting the frequencies associated with the two portions of a

vibration cycle by w1 and w2 , we can easily show that the averaqe

frequency (w) over the entire cycle is
1 (l/2)(w-l + w) (4.4)

Thus, the computational procedure required for a cross-ply plate is to

calculate w, and W2 associated with modal shapes shown in Figs. 4c and

4d, respectively, and then to apply equation (4.4).

The question arises as to the possibility of a discontinuity in

energy at the instant of time between the two portions of a cycle.

However, it was shown in [23] that there is no such discontinuity.

Numerical results are presented for relatively thick plates (b/h =

10) of aramid-rubber. Plate aspect ratio affects the fundamental

frequency much more than it does the neutral-surface portion (see Tables

4-5). For the cross-ply case, only Z l) and Z(2 ) is close to Z(l). In
X x y

Fig. 5 the good agreement between the CFS and FES results is clearly

shown.

Since there are very drastic changes in neutral-surface locations

(for example, z nx for aramid-rubber goes from approximately O.4h to -

0.03h) from one cycle portion to the other, there is a question that may

arise regarding a possible transient action. However, the neutral

surfaces are just boundaries between the tensile and compressive regions

(analogous to the elastic-plastic boundary in elastoplastic problems).

Thus, they have no mass and there is no transient action.
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Table 5 Dimensionless fundamental frequencies in the first partial
cycle, second partial cycle, and complete cycle of motion for
two-layer, cross-ply plates having b/h = 10 by closed form and
finite element methods.

W b2(P/Ec 2h3)1/2 W b2(p/Ec2h3)1/2 Wb2(p/Ec h3)1/ 2

a/b CFS FES CFS FES CFS FES

Aramid-Rubber:

0.5 19.38 20.23 13.88 14.55 16.18 16.93
0.7 11.60 12.17 9.353 9.807 10.35 10.86
1.0 7.038 7.386 7.038 7.364 7.038 7.375
1.4 4.838 5.045 6.037 6.356 5.371 5.625
2.0 3.712 3.909 5.551 5.821 4.449 4.677

Polyester-Rubber:

0.5 19.12 19.81 15.95 16.61 17.39 18.07
0.7 11.43 11.92 10.04 10.45 10.69 11.14
1.0 7.084 7.406 7.085 7.394 7.085 7.400
1.4 5.164 5.407 5.928 6.193 5.520 5.773
2.0 4.310 4.518 5.435 5.688 4.807 5.036

5. Summary and Conclusions

Both closed-form and finite-element solutions are presented for

static bending and free vibrations of single-layer and two-layer cross-

ply plates of bimodulus composite materials. In the case of simply

supported plates under sinusoidal temperature distribution, normal-

pressure loading, and free vibration, the closed-form and the finite-

element solutions for neutral-surface locations, center deflections, and

fundamental frequencies are in excellent agreement. The finite-element

method is then used to obtain solutions for simply-supported plates under

uniform loading, for which no closed-form solution can he obtained for

the bimodulus case.

The research reported here has recently been extended to

mechanically loaded thin cylindrical shells [26], free vibration of thin

and thick cylindrical shells [27], and thermally and mechanically loaded

thick cylindrical shells [28].
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